Accumulation of protein-coated liposomes in an extravascular site: influence of increasing carrier circulation lifetimes.
نویسندگان
چکیده
The primary objective of this work was to test whether increased blood levels and circulation lifetimes result in increased passive targeting of protein-coated liposomal drug carriers. The system used to evaluate this was based on i.v. injection of 100 nm of distearoyl phosphatidylcholine/cholesterol liposomes with covalently bound streptavidin. The circulation lifetime of these liposomes was increased by procedures that involved blockade of liposome uptake by phagocytic cells in the liver and/or the incorporation of a poly(ethylene glycol)-modified phospholipid [poly(ethylene glycol)2000-modified distearoyl phosphatidylethanolamine]. Blockade of liver phagocytic cells with a low predose (2 mg/kg of drug) of liposomal doxorubicin increased the circulation half-life of the streptavidin liposomes from less than 1 hr to greater than 3 hr. A further 2-fold increase in circulating half-life (to approximately 7.5 hr) was achieved by using liposomes with 2 mole % of poly(ethylene glycol)2000-modified phosphatidylethanolamine. In combination with RES blockade, the circulation lifetimes of poly(ethylene glycol)phosphatidylethanolamine containing streptavidin liposomes could be increased to greater than 12 hr. The ability of these liposomes to move from the plasma compartment to an extravascular compartment was measured by using the peritoneal cavity as a convenient, accessible, extravascular site. The tendency for liposomes to accumulate in this site was not, however, clearly dependent on circulating blood levels. Comparable levels of liposomes in the peritoneal cavity were achieved when using systems that exhibited significantly different circulation lifetimes.
منابع مشابه
State of the art of stimuli-responsive liposomes for cancer therapy
Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at t...
متن کاملState of the art of stimuli-responsive liposomes for cancer therapy
Specific delivery of therapeutic agents to solid tumors and their bioavailability at the target site are the most clinically important and challenging goals in cancer therapy. Liposomes are promising nanocarriers and have been well investigated for cancer therapy. In spite of preferred accumulation in tumors via the enhanced permeability and retention (EPR) effect, inefficient drug release at t...
متن کاملCationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors.
Tumor vessels possess unique physiological features that might be exploited for improving drug delivery. In the present study, we investigate the possibility of modifying polyethylene glycol-ylated liposome cationic charge of polyethylene glycol coated liposomes to optimize delivery to tumor vessels using biodistribution studies and intravital microscopy. The majority of liposomes accumulated i...
متن کاملInteractions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo.
Liposomes and lipid-based drug delivery systems have been used extensively over the last decade to improve the pharmacological and therapeutic activity of a wide variety of drugs. More recently, this class of carrier systems has been used for the delivery of relatively large DNA and RNA-based drugs, including plasmids, antisense oligonucleotides and ribozymes. Despite recent successes in prolon...
متن کاملAn immune response to ovalbumin covalently coupled to liposomes is prevented when the liposomes used contain doxorubicin.
It is now well established that liposomes with surface associated proteins are immunogenic. Repeated administration of protein coated liposomes elicits the generation of antibodies and the elimination of proteoliposome increases markedly in animals 'immunized' with such liposomes. This immune response compromises the therapeutic potential of liposomal formulations that rely on the use of protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 275 3 شماره
صفحات -
تاریخ انتشار 1995